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TIME~DEPENDENT CALCULATTION METHOD FOR

TRANSONIC NOZZLE FLOWS

1

v

Pierre Laval

ABSTRACT. A time~dependent method is developed
to compute mixed two-dimensional or axisymmetric flow in
'a nozzle with or without central body. The time-dependent
equations of motion are used in conservative form, with
transformed spatial independent variables. An explicit
second-order accurate difference scheme, similar to a two-.
step Richtmeyer scheme, is set up with an artificial
viscosity term. :

Results are.presented for an annular nozzle and for
five classical axisymmetric.nozzles with small throat radius s
of curvature (the ratio of curvature radius to nozzle radius
at the throat varying from 0.8 to 0.1). Excellent agree-
ment is found with exnerimental data and in particular
with experimental results obtained for a conical converging
nozzle.

" Iatroduction

The problem of mixed flow (subsonic-transonic-supersonic) in a converging-
diverging axisymmetric nozzle can be solved theoretically éither'by analytical.

or by time—depenﬂent methods.

The solution of this problem iség%:great practical interest when the
- ratio of the throat radius of curvature to the nozzle radius at the throat,

‘R/h, is less than 1, and more especially, when the ratio tends toward zero

* . . . . ,
Numbers in the margin indicate the pagination in the original foreign text.



. Classic analytical methods, such as those of Sauer: [1] Oswatltch [2]

and Hall [3], are no longer useful when R/h is of the order of 2.

More recent methods;; such as those of Hopkins and Hill [4] and Kliegel

and Levine [5] - can handle the case of nozzles with smaller radius ofl f_)

_ curvature (R/h < 1). 1In the first [4], which is an inverse method, the authors

. used a series expansion in powers of the stream function. In the second [5],

. solutions are obtained as series expan31ons with respect to the parameter

| 1/1 + R/h.

Agreement of these two methods with experiment [6] is satisfactory in

 the case of a nozzle defined by R/h = 0.625 (at least in the throat), but theyf

do not allow an approach to the case of the convergent truncated cone, since

their expansions diverge for R/h < 1/4.

This problem of mixed flow can be studied another Way by a time~dependent

. method. Introduction of time into the flow equations, making them hyperbolit,"

is known to allow calculation of the entire flow field with the same numerical

method, and to give the desired steady flow as the asymptotic limit of a

. time~-dependent flow.

Such a method was first used by Saunders [7] to calculate the transonic

" flow in a classic axisymmetric nozzle, using an explicit second-order method

"~ and Abbett [11].

proposed by Thommen [8], which did not contain a pseudo—viscosity term.
However, it has been shown by Burstein :[9] that it is necessary to ‘introduce
a pseudo-viscosity term to avoid instabilities in a second-order method such

as that of [7].

These problems were then treated by Migdal, Klein, and Moretti [10],
with a method developed for the problem of a detached shock wave by Moretti
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In addltlon, the method of Godunov-[12] has been. extended to the problem

- of flow in a classical or annular axisymmetric nozzle by Ivanov [13].

In the present work, a time—dependent method is proposed for calculating

the mixed flow in an axisymmetric nozzle with or without a central body.

The flow equations are used in conservative form, the space variables
(X, Y) being regular functions of the’Variables of the physical plane (x, y). .
These equations are solved numerically by an explicit secdﬁd—order method which
is related to the "two steps in time' method of Richtmyer {141, and which ‘

. contains a pseudo-viscosity term. )

A direct problem is solved by giving a steady state distribution of the
anglej ‘6 (X) on the lower and upper boundarles of the (X, Y) net. The nozzles -
considered are prolonged upstream by a tube of constant cross-section, and |
the conditions in the inlet are time~dependent.

This method has been applied to calculation of classic axisymmetric
nozzles with a small radius’ of curvature. The results obtained for different
- values of the parameter R/h ‘between 0.8 and 0.1 will be presented and comparedt
with experimental results and with those of other analytic or time~-dependent |

methods.

‘In particular, these results will show that the proposed method allows
an approach to the limiting case of the convergent truncated cone. Applicatibd

of this method to the case of an annular nozzle will also be presented.

We have also established another time-dependent method in which the

. coordinates (X, Y) used are images of the streamlines and of their orthogonal
- trajectories [15], [16]. This method was developed especially to treat a

| problem of confluence of two flows [17], where use of these coordinates‘allowsl“
‘the wake boundary to be represented by a line Y = constant. %BQVEﬂé problem :
of flow in a nozzle, this second method leads to large difficulties in

3.



" calculation, and requires much more computer time than the first (in particular,
' it requires the calculation of 7 quantities at each point instead of 4).
Since these -two--methods are-similar in-principle,-and-—since the numericalf

results have been obtained with the first method, we will present only that

one to shorten the\expdngiaﬁ;

1. Conservative Equations in Cartesian Coordinates

The equations of motion of a time-dependent compressible planar (e = 0)

' or axisymmetric (¢ = 1) flow can be written in the conservative form

M, dHU, 46U ¢ o
3 ‘@"97;“-‘"”(% |

(1)

in Cartesian coordinates (x,'y).

The vectors U, F, G and H are defined as functions of the usual quantities

" p (pressure), o (density), V (velocityj, and 6 (angle of velocity with x-axis):

[ el | e
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For the EééerﬁonsiderédfﬁéfQof a perfect gas (y =

energy is given by:

2.

constant), the total

”Change of Spatial Variables

3 . ' . : i
Flows in axisymmetric nozzles composed of a convergent—-divergent channel

~will be calculated.

have a central body (annular).

Let y.

¥, (x) and y =

The nozzles to be considered are classic nozzles, or may

)y (x) be the equations

" of the meridians of the upper and 1ower Walls in the more general case of an

annular nozzle (Figure 1, b).
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To simplify numerical solutionm,

‘the follqwing change of\vériables\is

first carried out:

\%° ~» 57

¥ - x@D .
()

domain.

-4

'in order to use a rectangular spatial

The lower (C,D) and upper (A,B)

boundaries are then represented by

= 0 and y =

1 in the transformed

jplane (Figure 1, a and b):

\ . '
In particular, we have studied classic nozzles with very small radius of

]curvature at the geometric throat (0.1 < R/h < 0.5), for which it is also neces—

sary to introduce a change of axial variable to expand the region of the geo-

metric throat wherée changes in the quantities characterizing the flow ate very

rapid (Figure 2).

+



For this, we have used the following

R o change of variable:

&
ey Xz )= {9 oc {&L 3)
\ —3 ‘ ) 4 ch(i 4) J R
with
i L i:i %(z)_ {4 xe«‘,x

{?igure 3. TFxpansion for\

0.1 R/h < 0.5. | e 4= (”‘"1’)

where X4 is the abscissa of the cross-section

of the geometric throat.

.
”
<

The quantities k, kl,-and ké are functions of the expansion'parametér‘

[T

g L) (34 g
- - a-r.-ah e ~'T‘Q¥ }
JL < i!f? 51} A

For nozzles with R/h > 0.5, it is not necessary to use the expansion

N

fuﬁ@tion. One simply sets X =

3. Equations in the New System of Spatial Variables

The new space variables (X, Y) defined by relations (2) and (3) are non~

singular functions of the variables in the physical plane, (x, y), so it is

known that the equations of motion can be obtained in comservative form in the

new system of independent variables (X, Y, t). This is shown in [18] and le];i

for example.



The system of Equatlons (1) is thus replaced by the- system.

QV éF ¥ —*y} :
of éx gy R %)

H

%which represents the equations of continuity, of momentum, and of energy in

- the new variables.

The new Vectofs ﬁ; f} G and H are thus defined:
. V)

o X‘U b

(%?@ ?( 4, x§~2114y}
H o FLugH)

as functions of

— the original vectors U, F, G and H;

‘— quantities related to the nozzle geometry, such as: - ‘ T

()= g4 10) ,Hﬂ) faﬁ )
2(x)= .t,a (x)- r}a&g’x A

~— quantities related to the dilitation function, such as:

I m- 25

=

Since it .is impossible to confuse the vectors of systems (1) and (&),

we shall hereafter write the vectors of system (4) without bars.

The components of the vectors F, G and H are given as functions of the

- 4 components of the vector U:

-

‘U‘-Qﬁﬁ(é}luag eVa‘ﬂ,gu’ -

U, eVmag..m et U _E’&
(5)

1



by the following relations:

( U{& R &_ Z,J:.-' w)i
Fsul!!_!‘ F__(u’,,'?,,_){h‘g’

- .1.{”,-“,_(”,,0&7)}

Gz 452 - (ﬁ““‘ 3&*7)}
@-—{ﬂ“u‘ e (4 +<y)}
Q Hf}“}{_"& g‘(?»"ﬂ
&-‘ii - 5“"‘*}4

H:Mi’: «S.JLJ
ST + &P

‘

H’”(U’r * ??c"f;‘“%’” 5.

& U‘} ‘i,'

The usual quantities p(x, y, t), o(x, v, t), V(x, ¥y, t) and 6(x, v, t)

are expressed as functions of the 4 components of the vector [J[(X, Y, t) by:

§

7

}
)

!

¢

B- »‘WI’;( A /U) : (}'r

a, 7
f ~{‘ ') { L} g ‘}b‘ , L& ’;‘
x U v &
:”—-—-—‘-———U - . -_ ‘ S Ul')

V- V’—-—N o (,,5

4.

'Method of ‘Finite '~Diff¢rences

®)

!_5- .

(7)

For numerlcal solution of the system (4), we have constructed an exp11c1t

second-order method, related to a "two-steps-in-time" method of Richtmyer [14]



A rectangular net is defined in the X, Y plane by use of the 11nes w1th

: coordinates Xj(J =0, 2, 4, ..., max).and Yl(l =0, 2, 4y, ..oy 1 ).

max
‘The four components dfifhéOQééfbfk'_-éré to be determined at the points
. of the netf¥}z; =y, As these quantities are known

i ‘ . } . : . n+2
in the whole X, Y plane at time tn,'thqlr values are calculated for time t '

using two steps in time:

. . . n +
~a. First step in time (t - " 1)

U g-i(Uﬁ fit—fU Ut"‘) |
_.:Bt | Fb’tt-F}“i;c+ Gj,b:cd-’i
A AX 1Ay

&‘[le’Hi-ll*H ty* ‘Q_‘) | e
' (8)

TG, i

.

IS Sy T

,4
qu.

' +
b. Second step in time (tn . +'tn+2)

iUIf‘ ’ UJ: Ll % ZQL&‘
\ At‘ r*JL E&@» G‘:, C
1\ Ve Ay / -

9

The components of the vectors

l. | ;; W/ 7,1;( );) . , -

... - - -..(Equations-continued on-next -page)
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G, G w‘fw (o 4)5)
; H?"“H}) (u.)b 2 “/{)é ) | I—

are determined through relatlons 6).

In the second member of (9), we have introduced a pseudo-viscosity term: :

(10)"

o
-

Qr e £ (s0) 5 (557

2A%

wh%ch is of the séme.type as that defined by Burstein [9].

It is known [9], [14] that a pseudo-viscosity term must be used in a’
second-order method, even if shock waves are not involved in the flow problem, '

in order to avoid the nonlinear instabilities inherent in such a method. - i

- The operators &X and §,, are the differential operators in the X and Y
~ directions. The'matrices{qg andiqy\must be chosen so that they give the .

- desired dissipative effécts when the vector {fjvaries rapidly between.two
neighboring points, and so that they are negligible when the variation is

. small. We have addptedlthé definition of these matrices given in [19]:

’It—- ‘ "'}4/(1 I }
)(Qy) jv,tﬂ 71.1‘ i '
1)
f where ﬁ and'b are the velocity componeﬁts and I is the unity matrix. " /6

The parameterﬂhj;hill be defined by relation (13). | o

The study of the stability of the method proposed in.EqGAEidﬁé‘(S)‘én& ’
(9) is given in the appendix. This study, carried out for planar flow (¢ = 0),
leads to the criterion for stability:. . . ; T

10
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?

S 2 !vaﬁn'i@ 5 - (12)
where ‘vl max ]VJ + ¢) for cartesian coordlnates, and a relatively complicated

. expression for the (X, Y) coordinates used (Equatlon_j 6).

This criterion seems to indicate’ that it is suff1c1ent to choose the.
parameter ]ghof Equation (10) to be equal to a constant of the order of unlty,_
so that the ratio At/Ax will not be too small. Preliminary numerical tests on
a classic nozzle (6.1) have shown that in fact such a choice leads to numerical
instabilities in the axial region of the flow, and we have thus been led to

define this parameter as a function of Y:

(13)

. where @,‘, is the value of [Q on the wall, a constant of the order of unity. ‘
- This deflnltlon assures stab1]1ty of alllthe calculations %arried‘out on classic
nozzles (6.1, 2, 3). The definition of[j&.is different for an annular nozzle,
and will be given in Section 6.4. V

-}

N

".,5. Initial and Boundary Conditions

The direct problem is solved by giving a steady-state distribution of

the angle 0 on thewupper (Y = 1) and lower (Y = 0) boundaries:

~— for Y

1: 6 = GS (X), the angle of the meridian of the upper wall;

— for Y 0: 6"=,.'6i (X), the angle of the meridian of the central body,

or 8§ = 0, along the axis.

11



5.1 1Initial Conditions

Initial values of the flow over the whole X, Y plane are found by using.
" the law of flow through sections. The angle 8 is calculated at each section

X = constant by a linear law:

The values of the 4 components of the vector [J], given by the relations

" (5), are thus determined at each point of the X, Y net at the initial time

n:)
.t O,

5.2 'Boundary Conditions

The flow is next calculated at time t™o + At, using method (8), then at l
time tn% + 2 At, using method (9), and so on. This allows use at‘éach step of
évfive—point ﬁethod(l), and thus calcuiation of the net (X, Y) in the whole
rectangle interior to A'B'C'D"(Figure:ﬁ), This net must be complete by con-

ditions on the four boundaries:.

Ca. Upperfbounc_iaifyﬁABi_’_[\TX:J#':l,'h.'QH, S XS X 8  =..& Q(X)]

The three, components Ul’ UZ’ U4 of the vector are calculated by

parabolic extrapolation at each section X = constant. This gives Ugsuaq

b. Lower boundary CD (Y =0, 0 <X :-Xmax)

— This boundary is ;he nozzle axis (6 = 0): .

[y

y

) ' ’ , _ =
" Except for the pseudo-viscosity term, which requires special treatment for '
the points on the contour of the rectangle A'B'C'D' (Figure 3).

12
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In this case, the symmetry properties

aqrv“ i?*?&ﬂ' — Q of the flow are used in calculating the
;?:iﬁt:‘ quantltles by pafapollc 1nterpolat10n at each
,1*@wfi:;?:tj:jx#%ﬁaﬁ secion X = constant. In the planar case
-,ﬂya-iﬁfffifiiw§ﬁ"J (¢ = 0), the interpolation is made for the
-1 &””iii:ijz;i;‘f three:components Ul’ U2, and U&’ while ?i = Qe»
1 RS For axial symmetry (e = 1), where Ul Ué =
: (central bodﬁ_JU = U4 = 0, the 1nterpolat10n is made for
vv(ax1sﬂ ;J P, P, and V.

Fi 3 '
igure — This boundary is the lower wall

[0 = 6, (®1:

The three components Ul’ U2 and U4 are calculated by parabollc extrapola—-

tion at each section X = constant. This glves g = ?

c. Upstream Boundary AC (X = 0 0 & Y\< l)

Calculation of upstream conditions is based on the conservation of mass
flow by writing that the mass flow in. the inlet section at time
t + A t is equal to the mass flow ‘pﬁﬂnihﬁﬁg calculated in the geometric

. throat at time t. ' l

This method has been used by Saunders [7], with the addition of requiring
the upstream conditions to be uniform in Y (one-dimensional flow), which
means that an outlet séction must be taken‘sufficiéntly upstream in the
inlet tube. This increases the number of points in the net considerabiy,'

and also the computational time.

To avoid these problems, nonuniform conditions in Y are imposed in ' /7

. section AC at the downstream end of the tube (Figure 4) - — —~ -~ = =

13



1
f
\
i
H

| — The four components of the

'

vector M (0, Y, t) are calculated

»

<

by parabolic extrapolation.

oo
»*

}
I
o

wob---

C"“ e - ~— The value of the component U2 ‘
; A (0, ¥, t) is corrected by consi~
- Y=4 deration of the conservation of
. 44+ o : mass flow. ' '
— —+{ d. ' Downstream boundary BD
C bl u—.-L..Yzq A
I :D

X=X ,02Y <€)

W The quantities are simply calculated
wFigure 4 )

S By linear extrapolation (Figure 4). .

[

6. Results o
The results obtained with an IBM 360/50 program are presented and combared

~ with experimental results or with those obtained by other methods.

They concern different classic axisymmetric nozzles for which the para-

. meter R/@{has values of 0.1 - 0.25 - 0.5 - 0.625, 0.8, and one annular nozzle.j

i

“"In_éll ;hese applications, the ratio of specific heats vy is taken to be
1.4, '

ﬂ 6.1 " Axisymmetric Noézle with Small Throat Radius of Curvature (R/h = 0.625)

This is a nozzle with circular longitudinal section at the throat
(R/h = 0.625), composed of a 45° convergent and a 15° divergent section

A (Figure 5). . e e

14
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'Figure 5. Axisymmetric nozzle Figure 6. Cﬁahge of Mach numbef with

‘ (R/h = 0.625). time. Point on the wall at the

geometric throat.

A detailed experlmental study of thlS nozzle was made by Cuffel, Back .

: and Mass1er [6] It was also studied analytically by Kliegel and Levine [5],‘

and numerically by Prozan [20], using-the method of Saunders [7], and by --~--~
Midgal, Klein, and Moretti [10]. “

. The results presented have been obtained with a 61 by 21 point net in

(X, Y), without using the expansion function (i.e., with X = x). The ratios -

" At/AX and At/AY are of the order of 1/17 and 1/12, respectivelyywith AX = AX/h

Tt

and ZE'=’C*At/h, where the index (,) refers to the sonic state. The valué:

- chosen for the ratio ZEVKi‘is a little smaller than that given by the criterion

for stability obtained for plane flow (Equatlons 12 and A.5). The constant

ﬁxn appearing in the pseudo-viscosity term (Equation 13) is equal to.1 éﬂ&ﬁilﬁﬁ:]

lations made with [J] . max - 1 or 2 give practically the same asymptotlc state) .
3

.ag

Figure. 6 and 7 show the change in Mach number w1th time at a p01nt on /8

‘the wall of the geometric throat and at a point on the throat axis untll the <

. steady state is achieved. For these two points, the value of the Mach number

remains constant within the accuracy of the method (EEQ n Z‘X"Io_s)mffﬁmﬂtﬁéf )

.15



ZEbth to the 280th iteration:' M =
wall

= 1.3820 and M . = 0.80045. The
axis

o axisymmetric nozzlel l ‘ -
i bxperimentalﬁg = 1:4}steady state is considered established’

1

‘Mach, |
¥

. C T g0 the geometric throat when the value

of the mass flow there becomes constant

(to about At ) which occurs at the

"398 r’1terat10n (Table 1). The corre-

PR o’

" sponding values of the Mach number are

Figure 7. Change of Mach number with 1.3935 (Figure 6) and 0.824 (Figure 7),
time. Point on the axis at the ‘

geometric throat respectively, and may be compared to

the experimental results of Cuffel, ‘
Back, and Massier [6]: Mwa11,= 1.4 ;
and M ., "= 0.8.

axis

' The asymptotic value obtained for the mass flow coefficient CD in the

geometric throat is shown in Table 1, where N is the number of time iterations.

This value is also compared with the values obtained by other methods.

In [5], the value of the mass flow goefficient is obtained by use of the‘j

approximate formula

Eoigaas | CL el B >
l&/a (gL 4¢a @ga) b - (14)

Ty i '»-,--

which depends only on 1/1 + R/h and ¥y, but is independent of the angle of the

convergent sectlon. The corresponding value, C = 0,982, thus has only{*ﬁ

{qualitative nature. |

Figure 8 shows the iso-Mach lines obtained (for 0.6 i)M_i 1.6). The dis-—
tribution of Mach number along the axis is compared with that given by Cuffel,

. Back, and Massier [6] (Figure 9). This comparison is very satlsfactory out to

= 2

16
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" TABLE 1. VALUE OF THE MASS FLOW

\

COEFFICIENT C T
D &

| B & . o :
g fSrEArs I T
4

53 feymanenty . B

Vausafandleme i} o) ol

94 {0 55501 |

P PRECE S

Foremn,ann & sasam ) o0}
{(Saunder s
205 fegseazse | fmethod [71) £ »
i " ., | {present methodlje-w22l

gy |

il

Figure 8. AxiSyﬁmetric nozzle
R/h = 0.625.
éiéonvefgént 453)' © a value of the Mach number of the

@)

order of 1.2
~ son of the results obtained for the

distribution of Mach number over the

. whole flow field with experimental

" results [6] is very satisfactory.

1y B

a6 T Be BF 8 a2 0s 6% OB

=
Figure 9. Change of Mach number on * '6.2 Axisymmetric Nozzle with Very
ithe axisu : S ‘ ‘ ) ‘ ‘

~ Small Throat Radius of Curvature
C(@®/h=0.1)

This is a nozzle with circular longitudinal .section at the throat (R/h =:;

= 0.1), composed of a 20° convergent and a 20° divergent section (Figure 10).

(Z)It should be noted, however, that the values of [6], taken from the
published paper, are not very precise, and that consequently this compari-~
 son is less significant than comparisons made with points on thé wall =
and on the axis in the geometric throat (Figures 6 and 7), for which the
authors [6] stated definitely the value obtained for the Mach number.

17:

In general, compari-



The difficulty in this calculation, which requires use of the expansion

function X = f£(x) defined by relation (3), lies in the choice of the parameter

‘the quantltles characteriz1ng tbe flow vary extremely rapldly (Table 3). Too

;

small a value of po(p0 < 3) gives insufficient expansion; too large a value

'(po > 4) creates numerical instabilities out31de the region of rapid tran51t10n,

[

due to too-large values: of\the ratio

—

L@[ij This appears in the second term

" of Equation (4).

The results presented were obtained with po =.3.4., The net contained

' 68 by 23 points (X, Y). The ratios At /AKX and At/AY are of the order of 1/16

and 1/15, respectively. The constantﬁgnma of Equation (13) is- equal to 1. 15

The changes of the Mach number as ‘a function of t1me at a point on the ;

wall of the geometrlc throat and at the axis at the throat are shown in

" Figure 11. For these two points, the asymptotic value of the Mach number is

ptactically attained at the 270th itéfééién., Table 2, which gives the mass

" flow coefficient CD in the throat as a function of N, the number of iterations,

. (x is the cartesian coordinate, and X is the expanded coordinate).

shows that the steady state can be considered to have been attained at the

278,th iteration in this section, when the corresponding value: Cb 0. 968988 :~

is obtained with an accuracy greater than that of the method (At2 N 100 ),

and then varies extremely little out to the final iteration (N = 375).

'The geometry of the iso-Mach lines (obtained from the 375th iteration)
is given by Figure 12, which shows in particular that the variation of Mach
number is very rapid on the wall, since the sonic point is situated on the

rectilinear portion, very near the junction with the circular portion, while

' the Mach number is 1.821 on the wall of the geometric throat. This variation

is shown clearly in Table 3, which gives the value of the Mach number as a

function of ewall (the. angle of the meridian of the wall), of x/h, and of X/h

18
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. Figure 12. Axisymmetric nozzle with

: ; s ~ " [steady §tate[
i b g éon wall at\ ™= 1.6211
"““ﬂ”"“‘f ] geometric throat]

P L

y . . ?vgeometrlc t roat f
'4 T 2e o X% ) Z i —d " |steady state
=’ sl ? do s M= 0.75 | J\
. N t e—
. > : 1. i [ number of iterations|
Figure 10. Axisymmetric nozzle ) 0 = w ]
(R/h = 0.1). - '

Figure 11. Change of Mach number
with time. Axisymmetric nozzle.
20° convergent section R/h = 0.1

TABLE 2. MASS FLOW COEFFICIENT,
20° CONVERGENT SECTION. R/h = 0.1.

@ﬂm'
0, 9680981
9685925
259

;5669084
OOW‘
0.96550W
05970453 !
O:WJ .
0,987 {| . ’

MO E

'PABLE 3. MACH NUMBER ON THE WALL.

-
-

ot

}
73 Mg
&

i

13

; -

@

[ S

very small throat radius of
curvature (R/h = 0. l) Q circular
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To show that the present method . ‘can handie the case of a trum—_ |'~'_14 U

:vcated cone convergent sectlon the precedlng study has been completed by

- carrying out calculations for a nozzle composed of a 20° convergent and a 20°
divergent section for,tﬁree other vaiués of the parameter R/h: 0.25 - 0.5 -. 1
0.8. The case forAR/h = 0.25 was treaéed by taking the expansion parémetér

Py = 2.5, while inAthe other two cglcuiations (R/h = 0.5 gnd'O.S) no expansion.
~ function was used (X .= x).'l

The results are compared with experimental results of O.N.E.R.A. [21] for

a 20° truncated cone convergent section for an ideal gas (y = 1.4).

Figure 13 shows the position of the sonic line as a function of’R/h.” o
‘The agreement with the expéfimental results is very satisfactory. |
Figure 14 shows the mass flow éagffzglent in the geometrlc throat as a o /11
F; function of R/h. By extrapolatlon of the  results obtained for the four values |
~of R/h (0.1 - 0.25 - 0.5 - 0.8), a mass flow coefficient of 0.968 is obtained
. for R/h = 0. The relatively large difference (3/1000) between this result and

the experimental result of C_ 0.971 is due in part to d1ff1cu1t1es in the

D“
experimental measurements in éhe region of the anglé apex, which result in a
certain amount of uncertainty in the determination of the test line (peak or.

~ characteristic line) along which the mass flow is calculated. It-is for this
B reason that experimental points for the sonic line are not given for values of.

" the ordinate y/h greater than 0.8 (Figure 13).

Comparison between results of the'present method for the mass flow.
coefficient in a nozzle with. 20° convergent section and the results obtained
' with the approximate Formula (14) of Kliegel and Levine [5], independent of
@he angle of the convergent section, is made in Table 4, which shows glegrly'
tﬂat‘the fourth order expansion is no longer significant when ‘

‘R/h = 0.25.

20
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t

es}|position of the] N R os
: - sonic line ast AR
astfa function of R/h

ast ~\££esent methvf

I o s AT ’ ] ;
[~ *|present method ,
* lexperimental

oab experlmental
(truncated’ conexﬁ
o1 convergent section)
] R N
et 3’..3._%._02 ¢ — . A, P ¥ ;’ .
v 0) 04 0.0t p2s .5 on Mg ] ‘
Figure 13. Axisymmetric nozzle. - Figure 14. Axisymmetric nozzle with
20° convergent section. 20° convergent section. Variation
" 7 of the mass flow Coeff101ent with-
‘ R/h
TABLE 4. MASS FLOW COEFFICIENT AS A
FUNCTION]OF R/h
) ~
preseq Kllegev, R . \’r
%i metho%ﬁ]ofét ' : 6.4"Aﬁnp1ar<n9221e(3)
o8 | oz | o9mu2 | o012
0,5 | 0,918 ‘myuma;-msnmk The example chosen has been
0,25 | ©,571380 0.915575 °'96fo treated earlier by Ivanov [13].
0,1 | 0965988 | 0,966974 -| 0,948956 . : '
e (509&) Q'W 0,9233T1 R ' )
. ’ N The upper wall of this nozzle is

a cylinder of radius Vg = 5. The.longi—

*
20° convergent section e :
8 - tudinal section of the lower wall is |

Kk
Development 1nd§pendent of the composed of the straight line y. = 1, )
convergent section angle 0

and of three circular ares with radii

4, 2.43, and ~15, respectively :'u"‘ T

RS e (Flgure‘IS) \\\\\ 'i 2} ;i\‘;‘ ;:;>L*

( )Computatlons for this nozzle were carried out by Mlle. Mortlre of the
O0.N.E.R.A. Computer Center.. »
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- Figure .15,

Célculatipn'of'Such,a:ﬁozzléAdifferS'from that of a classic nozzle mainly

in the choice of the parameter [] in the pseudo-viscosity term.,

b
s i
t K
-5 A 8 Alr gy "
¥ v T ¥ R 1.4
:\\ H ' & [ - -
s § 668 4 k.
A S N O :
! \‘ : P : b 42
ot ':C ‘ & -
‘ ' )
. - . —.—.....—,.- o — - o
K =z=8 ma@:mx z.zss ¥
Annular nozzle. Figure 16.

‘Mach number with time.

. Annular nozzle. Change of

Point on the

lower wall in the geometric throat

have led.to the following definition:-

The results presented have been. obtained by taklng Il’ the value of i

the lower wall, equal to0.25.

t

Numerical tests
L :

It must be pointed out that establishment of the steady-state regime is

much slower for this annular nozzle than for the classical nozzles treated

 previously; this is shown in Figure 16, which gives the jchdnge in Mach number: .

as a function of time at the point on the lower wall at the geometric throat.

- It can be seen that the Mach number has not attained its aéymptotic value even

after 500 iterations, Wthh corresponds to computing time of more than three

hours on the IBM 360/50 [for a net of 75 by 17 points (X, Y)1.

These difficulties in obtaining steady state were also encountered byl|

5 /12

Ivanov [13], who emphasized the slowness of convergence in the slightly subsonic

region of the convergent section.



Fgf —] Figure 17 shows the geometry of

the iso-Mach lines in this nozzle.

These lines are slightly more inclined

than the ‘iso-Mach lines obtained by

Ivanov. This difference can be accoun-=

;[%ﬁﬂ ted for in two ways:

WL L .ﬁq;,.._ﬁga--gna--_‘gguu«_;}-_g%

RS

— The lines have been obtained by the
Figure 17. Annular nozzle. present method out'to the 500th

' Iso-Mach lines. iteration, while the sfeady state
was not finally established. (This

would require prohibitive computer

time.)
— The calculations of Ivanov were carriédnput with a net of wider spacing..

The results obtained, and partﬁcularly their excellent agreement'with
the experimental results, show that the problem of transonic flow in an axi-
symmetric nozzle can be solved quite satisfactorily by a second-order differ-

' ence method containing a pseudc-viscosity term.
The method proposed contains the following specialbﬁoints:

‘a) Conditions in the inlet section of the nozzle are time-dependent, the
mass flow in this section being equal at any time step to the mass flow

calculated in the section of the geometric throat (5.2 ¢).

| _ ‘ ‘
b) The parameterﬂzr of the pseudo-viscosity term is defined as a function
of the spatial variable Y (relations 13 and 15). e

c) Use of an expansion function X = f(x) (relation 3) allows this method to
-be extended to-nozzles with very small radius of'curvature’Cth“='0:1);“’
23,



.and to approach the case of a truncated cone convergent section, as is

‘1sshowﬂby comparison w1th experlment (6.3).

d)  This method can also be applied to thé problem of annular nozzles (6.4)
' v
(a problem also treated by Ivanov [13] with the aid of the method of
Godunov [121).

| In common w1th all second-order, conservative methods, the present one
:;réqplres»a relatively dense.ngt' and consequently. relatlvely long computer tlme;
”_The different applications to classic nozzles.whlch have been presented ,
required-§§}the order of two hours on the IBMréﬁO/SO. The steady state was
,obtalned for a nozzle W]th very small radlus of curvature(T/h = 0.1) after

7 135 minutes of computation for a net of 68 by 23 p01nts (X, .Y). Use of a

E relatlvely dense net does, hcwever, allow the steady flow to be determined with

- good accuracy\ If one takes into con31derat10n the fact that the Tength of com-—

_ putation can be reduced by taking initial values not as far away from the steady
' state @E]/those given by the law of’ sectlons, it can be seen that thlS ‘method’
' is a ‘tool for numerical computatlon which is not only prec1se but also o .

: relatlvely rapid.

Lo

e e — e o b et
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Appendix A~ secv:ion Lo

Stability of the Method

The stability of the proposed method is stuagi‘é*d’\_f‘or the case of planar ;
flow (¢ = 0) in a nozzle without a central body, with R/h-> 0.5. The change

of spatial variables is then defined by lv $y0 “""u*“_l (no expansion function).

Under these conditions, the vector H appearing in the second member of

system (4) is zero.
The linearization hypotheses are as follows:

‘ ~ The matrices A and B, Jacoblans of the vectors F and G, as well as the _
" scalar matrlcesl'ﬁﬂ and l defined by Equatlon (11), are ‘supposed to be 1ocally

constant.

In that case, one may set i

F-AU b= ‘BU
\—a {q‘ U+q,S U}

' 7
and may carry out a Fourier analysis by settlng 'ﬁf 5'3*-3&""@9fgwhere @1.’
. i (R ‘

is 'a constant vector for each value of n.

“(s ,‘!j,ﬁut): {1 -X};“l sm'ye f'ru'afgf
et (49




where

Cz hoat eBaa
. E;‘&.gbx ? N "&'?f‘y e

Since the direct calculation of the eigenvalues of the matrix € is too
complicated, the system of equations will be considered in Eulerian form, as
was done in [14], in which the matrices A' and B' are simpler than the matrices

A and B in the linearized system of (4):

" where {r& = V(M’Jcc&@j&é)l

By similarity, one Ehn go from this Eulerian»system to the linearized
system (4). The eigenvalues of the amplification matrix M are 1nvar1ant under
31m11ar1ty,'so mattix C of (A.1) can be replaced by the matrix EZEZEZ;;g:EV ]

for which the eigenvalues can be calculated without difficulty:

i ik
W }»: | ;
A SR,
A am, § ram
S g \g’% WAL cfmu ent .

‘ Y

‘ Yf vom P

R -V

with:

28



where the angle 91 is defined by:

The eigenvalues of M are expressed as functions of the eigenvalues of C" 7%

by the relation:

(A.4)
s _54 . | ’
Note that | max “MV .|, where "-'lea;c is the maximum eigenvalue of C',
and 81nceﬁ,,<hg!] and[ Gy & i] the method is stable in the Neumann sensé
Cif '
ET S
o,
ax ‘
' (A.5)
' where ‘\)l allows for increasing K:
, max
- . (A.6).
L C - . e - SR
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”‘particular Values* Since the scalar matrlces q. and q_.are chosen p051t1ve I:

1}Lcr1ter10n (A 5) 1s satlsfled _':, e e e T S .

e b T e - PR Sea -

Thiswéfigéfiéh, established for planar flow, can be used only qualita-

. tively for applications to axisymmetric flow. The|value of this stability

‘study is that!it confirms the necessity of introducing a stabilizing pseudo=

viscosity term. Thus; relation (A;4) shows that if the pseudo-viscosity term
is not ‘considered (lﬂl), eigenvalues lur:are strictly equal to 1 when the-

elgenvalues [Kl of C" are zero;’l e., when u'= 0 (1n partlcular V'= 0) and

‘ chjwﬁifrom Equatlon (A 3), 80, the method is not - stable for -these f T

i

(Equation 10), the method with v1sc051ty w1ll always be stable when.

i —_
P Nee

e e e

Translated for National Aeronautics and Space Admlnlstratlon under Contract No.
NASw 2035, by SCITRAN P.0. Box 5456 Santa Barbara, California, 93108.
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S T ABSTRACY

INTRODUCT ICN

‘l'bo cnlculntion of mixed Tlcy in n converglng-diverging axtnymetric nogz'.¢ 1a .

of groat practical intorest in the case when tho ratio of throat radius of curvaturs
- to the nozzle radius at the throat &/% 15 swall. This problem can be so)ved oithor
by analytical wmethods (HOPKINS and HILL 1966, KLIEGEL and LEVINE i969) or by nume-
rical timo-dopondont methodd (SAUNDERS 1966, MIGDAL, KLEIN and MORETTI 1969, _IVANOV

1969)

In the presont work, a time dependent wethod 10 used to calculato Dixed two-
dimongional or axiaymtric flows in o nozzle with or without central body.. The
equations of wotion are written in terms of trangforezed opatial variablos and oolved
by meoans of an explicit second-order scheme. The results will shou that tho cethod
propoged here allows to approach the iimiting case of the conical convorging nomlo.

A different time-dependent method was aslso set up in which the mdependent va-
riables are the images of the streamlines and of their orthogonnl traojoctorios
(P. CARRIERE 1968, P. LAVAL 1968), Howsvaer, for the prodlen considerod here, thio
method proved to be wuch more complicated and lead to cuch longm' cozputing times. ' -
than the first one, and it will not be presented here, A number of dotails which
cannot be given here will bo available in a more extonsive papor to Lo publ ichod -
" soon (P, LAVAL 1970). ‘

I - GENERAL EQUATIONS

In the general case. of axisymetric or of tvo-dimnsional nozslo with contm.l
_body, let 3z and & reprosent the non-dimensional aoxial and radial or trangversal
coordinates, and let gagp(g) and %2 %.(x)be the equationn of tho upper and lowor
walls., The reference length is gcuch that g.g@;)ng @sﬂ at \zl.a throat The trangforwed
coordim tos aro deﬂnod by tho equatxona : - .

e .: . %M yz W - . o

PRI 1T S . o
@ oz Xz B ;-

-whero zgi . 3, is ‘the throat absciana. &(&:Ja&%(iz, ¢&£’7 4&(&)- (az,‘o&&z,).

The followms conditions are imposed at the throat : - % ):% g (xo =6 . The . :
parameters & . By and & s €an thus be expressed as functions of the only paramter

@3 ‘g (’“)

The transformation from m? i wade in order to obtain o rectangular do=- -
wain (Fig. 1), The transfo axial varieble X is uood. m tho cooe of clasgical .
nozzles with very small throat radius of curvature (0,1 "E‘ 0.5). It allows to
stretch the throat region whero large gradients ocour. (th 2). Vhen R 0.5, the
stretchtng i not used (x-':;) _ o A }; g -

The coordinatea transforaation betng regular, it is poaaibla (ANDERW WIDUS)
.to write the. tim-dependentl equattons ox aotton in conaervative fom in- the nw RN

variables X Y c R
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" Tho coaponento of the vector U are :" B o A . ‘
@ Uz py'e , Uya pVessby s UB-QVM%& %355’%’ e

where J(X)z Ye(x)- ?(&) ® is the angle of the velocity vector with the s -axio,
s

E= ?/w.gjg.% y3ig total energy for a perfect gus, 'l'hfa paramtar & 1g equal to 0'
for plane £flow. and to 1 for axisymtrio flow, Lo s

o The {g’omponento cf the vectors F @ ‘and H ore g;ver; atom of the ccapo-c; :
‘ nents of and of geomtrical variablea such.that «; o 450; KR)a %(‘S)- Q,

F F(v, g) @ @(U y, ,g.,,%) H Hw m %)

¥

1 - FINI’I’B‘DIFYERENCE SCHEME :

A rectangular net of pointa is defined in the x y &l&ne with tho coordinate:r .
" lines X (3. 0,%,%. Mnd Y2 (L2 0,2,%,. Zm) Let aﬂ- be tho value of ¥ at -
< the point 8?33 Y& Q_Ay and at tim €z 248 With mgﬁ. Q‘Q&‘ ** 0 ey, ©

L

E

" Ue use th@ following explicit, ‘sécond order schems : +° ."' :
. U “
,@

) ; 2 4 ( »M&-#U .0@9U @%QU @.ﬁ) At(goﬂ °F}AQ @g&a-@gﬂ-s) _,..;_
6 amz T aay L
S M.At( M@,OHjG@OH&Z%G‘Hﬁu) TR s T

(7')* ;Ujl@;-uj,cgAL(F?M&=FA&¢ @?}M-Gﬁg_ )‘¢, e_ﬂt Q;ﬁ:#Qﬁu .'
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N et o Coe
The vectors ﬂ,@ Ga’e’ and ng are det.roined thmgh equeuonn (3)

A paasr do-viscootty term is added to the right-hand oide of (7) :

'(é») - Q X at (f (% U) gy(gyg,U))

which 10 of the type defined by BURSTEIN,

One knows (BURSTEIN, RICHTMYER) that i1t is neconeary to uge posudo-vigcogity . .
. term in a second~order ocheme in order to avoid non-linear instabilities. The mtrtc«
%& and ?7 are given by the oxpressions (IAPXDUS)

“” (7'1)5,@3 | S 552 |T ();e [Gen-Ges|T, o
where AL and W are the velocity components and [ 10 the unit matrix,’ . ‘ “ )

The study of the otability was made for plane flows and tho results aré gtven _:' X
in (P, LAVAL, 1970), » , . S

- For clasgsical noxalen pmliainary numerical calculations have leM to deﬂne L
the paraveter X which appears in (8) 83 a un@m- function of y

no)‘ -  X= X%y

whero x , tho value of X at tho aau, isc of order unity,

IIT = INITIAL AND BOUNDARY CONDITIONS
—_—— e NS

For a given noszle, the value of § ‘48 known on the uppor (Yuﬂ) and xmr (ys‘@)
boundaries (Fig. 3). .

The initial values of . and Y are obtained grem the me—dic:snmional appre
xioation, the angle being calculated by a linear intorpolaticn : @g?ﬁ}(tx}o@.}f)&@
For the flow values at the upper and lower boundaries, o parabolic extrapolation

18 used, taking into account the relation Upg Us&e(%) . when tho 1ower boundary -
m the nozzle axis, the 210:1 aymtry ig taken care of by a parabolic interpolauon. e

A

L 1 |

S T
. X
.Y=079= 8.\%) com e!body _

0 ams
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Tice-dependent conditions are imposed at the entrance section AC ‘by calculut mg ‘,’.
the coapanents of U by a parabolic oxtrapolauon The coaponent U& is8 then cor-,
rected by writing that the mass flow rate »° through the entrance section at time . s
L ¢4C is equal to tho mass flow rate through the thront soction at timo £ (Fig. 4

" At the exit pection BD, values are extrapolated linesrly (Fig.4). : = o

1V - RESULTS

Calculations have been carried cut on a 360/50 IBM co:z:puter, for J @ 1,4, '

'
i
2o
L

. v, 1 = Axisymetric nozzlo with swall thront radiug of curvature ( a/&u 0,6252

This nozzle which 1o nade of a 45° cenvor=. -
gent and a 15° divorgent (Fig.3) has boon otu= '
died by various authors (CUFFEL, KLIEGEL, e
. PROZAN, MIGDAL).

The results have been'obtqinod with a net
of 61 x 21 points (®)¥) and with X . 31.8,
the stretching of the axisl coordinate batng :

| .
i :& : - not used.
Cl ! 'D : -
......_..-.-..:&: it i -l Steady state ig considered to ba obtoined
Yoo 1 W'""“" & bl at the throat when the mass flow rate change

_ at each iteration becomes smaller thanL® (@8.49.‘ i
FIGURE & : Axisymmetric nozzle@é;ocas) This occurs after 398 iterations (Table I), The
' corresponding values of the Mach number aro .
1.3935 at the wau (Fig. 6) and 0.8 on the axis (Pig. 7). These values can bo conpu-.,,
ed with CUFFEL's experimental values : ﬁm@ ® 1.4 and M2 = 0.8, : :
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on wall vo tiee, , C . on axis wa ttm. t

The valueo of the dis=~
chorge coefficient Cp cal=’
culatad at the throat sec=-

TABLE I - Diocharge caofficient p

NS c : ‘tion for the last seven - ...

. ‘D ) ‘ iterations are given in o
KLIEGEL & LEVINE 0.982] Table I, where N io tha -\ -

'392.]0,9849025 | -iteration. number., The L

393 | 0.9850113 CUFFEL, BACK & MASSIER - -0.888 asyuptotic value i8 coop~

394 | 0.9850981 —— - ared with values obtained '~

395 | 0,9851634 PROZAN (SAUNDERS Tathod) © 0.980 lby onm- mthods. ' K

396 | 0.9852066 . — e

397 | 0,9852279 Present ©eihod . | 0.883227

398 | 0,985%2274 g
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1V.2 - Axisymratric nozzlo with very small throat radius of curvature (ﬂ/& = 0,1) “jft-q

. " Convergent ond dtvergomt ongloa am bm
equal to 20° (Fig., 8).

Strotching of tho arial coordinato is
used vith P o 3.4. A nat of 68 i 23 points

Table Il gives the discharge coefficient i
" at the throat. Gne 5cos that after 278 ites -
_ations Cp changes by lesa than é@,‘(wg'ﬁ"m( :

ono can congider that the aaymptouc valuo «

FIGURE B : Axmymmric nolee(ﬁl&sod cn is 0.858988.
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FIGURE 9 : Axisymmetric nozzle with very
" pmall throat radius of curvature (ﬁual) )

Ciaew s |.378 | O.g68079 .- ..

% io used, with = 1,19, et
oy fe:

Froa Figure 9 it can bo scon that large variations of Mach number  occur, partt- Iy

cularly at the wall, on the roctilinar part of which the gonie point is located, ver
© closae to the circular pcurt -whereas the Mach nunbor; 18 equal w 1. 821 at the, thmt
aoction. e ATt S LU T, P A

ST R R ot L CL ot g

Yoo ...“

" IV,3 - Axisymmetric nozzle with a 20’ convergent_ar and vm'ying R/& rotion

To atudy the approach to the limning case of & ccn'wm ooavergtng no:mlo, cale
culations have been made for three values of R/ : 0.23 = 0.5 and 0.8, besides tho
value R 4, = 0.1 (IV.3). The results will bo coupared with ezperiaenw cenﬂ'tod out at :
O.N.E.R. A (SOLIGNAC) for o 20° conical convorging. momzle.. ' - - R

Excellent agmemnt is found botwen thoory nnd expartmnt comcerning the loca-
tion of the sonic line (Fig. 10). Extrapolating tho nuwerical rosults relative to th
4 values of R/g, ono obtains Cp .= 0.968 forRfp= 0 (Fig.: 11). The difforenco botseen '
this value and the experimental result Cp = 0.971 can bo explained partly Ly the = '
duﬂoulty of the moasurements in the nexgrbourhood of tho angular pomt
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ncm 10 : Axicymtrlc nonolo - - PIGURE 11 : Amioyr=otric mocslo with 20° ' h

20° convorgont, .+ ceavorgont. Dicchorgo ecefficieas va, Rf4 .

CONCLUSION
The calculauone which havo boon presented, "and particularly the oxcollont agree='
‘ment which has been found batwoen oxperimcntal and aucsrical rogults, chsw that the
. proposed method iz wall .suited for calculating transonio noasle flowo. This mothod
' procenm the i’olloving parttculax' featuros ; .

= conditions in tho entrunco section aro txs@-depandent'

"= the paramator J{ vhich appears in ths pocudo~vioconity toro 18 €ofincd as &
" function of the transformod coordinate Y (equ. 10);

- =.a strotching of tho axial coordinate (equ. 2) allows te troat the caco of vory
saall throat rmxua of curvature and to approach the caso of a comtm coavovg-
ing noazle;

= the sathod io applicablo algo to annular nozslos (P, LAVAL, 1870).
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